Excited State Electron Distribution in Cyclopropyl Ketone
 Rearrangements. Mechanistic and Exploratory
 Organic Photochemistry. LI^{1}

Howard E. Zimmerman and Christine M. Moore ${ }^{2}$
Contribution from the Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706. Received September 19, 1969

Abstract

The irradiation of trans-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane (4) was found to afford both cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane (6) and trans-3-p-methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane (7). The reaction led preferentially to the cis,trans isomer 6 which can be interpreted as arising from bond 1,3 fission in the excited state of the trans, trans isomer 4 followed by single rotation about the 2,3 bond and closure. This selectivity corresponded to $78.9 \pm 0.4 \%$ of the cis, trans isomer 6 and $21.1 \pm$ 0.4% of the trans,cis isomer 7. Sensitization, although inefficient, afforded the same distribution of stereoisomers within experimental error. Evidence was obtained that T_{1} is the reactant in direct and sensitized photolyses. The reaction could be quenched up to the extent of 42.5% with 1.5 M piperylene and a rate of stereoisomerization of $1.5 \times 10^{10} \mathrm{sec}^{-1}$ for the triplet of reactant 4 was estimated from the Stern-Volmer plot. The quantum yield at low conversion determined by isotope dilution assay was 0.76 , corresponding to an especially efficient process. The reaction selectivity along with related studies allows the excited state to be depicted as having odd electron density in the three-membered ring.

In our previous study ${ }^{3}$ on the substituent effect of the photochemical stereoisomerization of trans-3-p-cyanophenyl-trans-2-phenyl-1-benzoylcyclopropane (1), it was found that cis-3-p-cyanophenyl-trans-2-phe-nyl-l-benzoylcyclopropane (2) predominated over the trans,cis isomer 3. This was shown to arise from the preferential fission of bond a relative to bond b (and

also c) (eq 1) and could be interpreted as arising from an electronically excited state which had an appreciable odd or excess electron density in the three-membered ring. Thus, an excited state which was electron deficient in the three ring would have led to an open intermediate in which bond b was broken instead.

The present study had as its initial goal the determination of whether the excited state is better pictured as having odd or high electron density delocalized into the three-membered ring and an exploration of the effect of substituents on the efficiency and rates of the reaction. The approach selected was an investigation of the photochemistry of trans-3-p-methoxyphenyl-trans-2-phenyl-l-benzoylcyclopropane (4).

Synthesis of Reactant and Tritium Incorporation. Two routes both beginning with cis-1-p-methoxyphenyl-

[^0]2-phenylethylene (5) proved useful for the synthesis of trans-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane (4) (Chart I). The reactant 4 was required

Chart I. Synthesis of
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane and Tritium Incorporation ${ }^{a}$

with a radioactive label for use in quantitative photochemical studies by inverse isotope dilution analysis. ${ }^{4}$ The hydrolysis of p-bromophenylmagnesium bromide
(4) (a) H. E. Zimmerman and K. G. Hancock, ibid., 90, 3749 (1968);
(b) H. E. Zimmerman and P. S. Mariano, ibid., 91, 1718 (1969); (c) H. E. Zimmerman and G. E. Samuelson, ibid., 91, 5307 (1969).

Chart II. Synthesis of
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane and cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane

Chart III. Deuterium Labeling and Assignment of Stereochemistry

with tritium oxide allowed the convenient incorporation of tritium; see Chart I.
Exploratory Photochemical Results. Initial photolyses were carried out in benzene with a Pyrex filter in preparative apparatus. Irradiation of trans-3-p-meth-oxyphenyl-trans-2-phenyl-1-benzoylcyclopropane (4) gave two primary photoproducts, 6 and 7, in a ratio of $c a .3 .4: 1$ (eq 2). The nmr, ir, and uv spectra (see Experimental Section) suggested that these products were stereoisomers of reactant 4. This assignment was confirmed by synthesis of isomers 6 and 7 from trans-1-p-methoxyphenyl-2-phenylethylene (8) as shown in Chart II. The reaction appeared to be facile and the mass balance was excellent ($c a .95 \%$).

Assignment of Stereochemistry. In order to assign the configurations of isomers 6 and 7 and confirm the stereochemistry of 4, the cyclopropyl rings were labeled with one deuterium atom at carbon 2 (i.e., the benzylic position) and the nmr spectrum of each isomer was
examined. A modification of the original synthesis was employed, as is described in Chart III, to give the three cyclopropane stereoisomers $4-d, 6-d$, and $7-d$.
The nmr spectrum for each of the monodeuterated compounds contained an AB quartet in the cyclopropyl $\mathrm{CH}-\mathrm{CH}$ region from which the coupling constant was readily obtained for comparison with known cis and trans values. Reported coupling constants ${ }^{5}$ for ciscyclopropyl hydrogens range from 8 to 11 Hz and for trans hydrogens range from 5 to 7 Hz . For $6-d$ the coupling constant of 9.5 Hz indicated that the two threering hydrogens are cis. For 7-d the coupling constant was 5.0 Hz ; therefore the hydrogens are trans. The remote possibility that reactant 4 might have the all-cis configuration was excluded by the coupling constant of 5.5 Hz observed for $4-d$ which confirmed that the hydrogens were trans.
Quantum Yield Runs. Quantum yields for the photoisomerization of trans-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane (4), affording cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane (6) and trans-3-p-methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane (7), were determined by the method of inverse isotope dilution analysis. Direct runs (i.e., unsensitized) showed the reaction to be very efficient with a total quantum yield averaging 0.76 for low-

Table I. Direct and Sensitized Quantum Yields of trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane Stereoisomerization

Run ${ }^{\text {a }, ~}{ }^{\text {a }}$	Reactant 4 used, mmol	Light, mEinstein	$\begin{aligned} & \text { Quantum yieldse } \\ & \mathbf{6}^{d} \quad 7^{\text {d }} \end{aligned}$		$\begin{gathered} {\left[\phi_{6} /\left(\phi_{6}+\right.\right.} \\ \left.\left.\phi_{7}\right]\right] \stackrel{+}{\times} 100, \\ \% \end{gathered}$
1	0.359	0.101	$\begin{aligned} & 0.548 \\ & (\pm 0.027) \end{aligned}$	$\begin{aligned} & 0.130 \\ & \quad(\pm 0.007) \end{aligned}$	80.8
2	0.289	0.0207	$\begin{aligned} & 0.590 \\ & (\pm 0.030) \end{aligned}$	$\begin{aligned} & 0.154 \\ & (\pm 0.008) \end{aligned}$	79.3
3	0.165	0.00836	$\begin{aligned} & 0.607 \\ & (\pm 0.031) \end{aligned}$	$\begin{aligned} & 0.165 \\ & (\pm 0.009) \end{aligned}$	78.6
4^{\prime}	0.154	0.0483	$\begin{aligned} & 0.0742 \\ & (\pm 0.0040) \end{aligned}$	$\begin{aligned} & 0.0188 \\ & (\pm 0.0010) \end{aligned}$	79.6

${ }^{a}$ Runs 1 and 2 at 313 nm in benzene at 24.0°; run 3 at 340 nm in benzene at 24.0°. ${ }^{b}$ All runs to ca. 5% conversion except for run 1 , which was 20%. ${ }^{c}$ In mmol/mEinstein. Errors estimated from experimental data. ${ }^{d}$ Appearance of cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane. © Appearance of trans-3-p-methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane. f In 4.0 M acetophenone in benzene at 313 nm and 24.0°.

$$
\begin{equation*}
\frac{1}{\Phi}=\frac{k_{\mathrm{r}}^{\text {tot }}+k_{\mathrm{d}}}{f k_{\mathrm{r}}}+\frac{k_{\mathrm{q}}}{f k_{\mathrm{r}}}[\mathrm{Q}] \tag{3}
\end{equation*}
$$

Multiplicity. Interpretative Discussion. It is clear from the acetophenone sensitization that the triplet excited state of the trans,trans isomer 4, when independently generated, does lead to the same stereoisomerization process. Since the sensitization is relatively inefficient and the chromophores of the donor (acetophenone) and the acceptor (the reactant 4) are not grossly different, it is reasonably safe to conclude that it is the lowest triplet T_{1} which is generated in the aceto-phenone-sensitized runs.

Figure 1. Stern-Volmer plot; disappearance of trans-3-p-methoxy-phenyl-trans-2-phenyl-1-benzoylcyclopropane.
the triplet excited state of trans,trans isomer $\mathbf{4}$ can be estimated (i.e., $k_{\mathrm{r}} \mathrm{ca} .1 .5 \times 10^{10} \mathrm{sec}^{-1}$), taking 1.0×10^{10} sec^{-1} as the rate of diffusion in benzene.

It is seen from Tables I and II that the composition of the product mixture varied from 78.9% cis,trans isomer 6 in the direct runs to 86.5% isomer 6 in the 1.54 M naphthalene run. This change in product composition is small (i.e., a spread of $c a .7 \%$) but does seem real. In considering the possibility of intervention of two different excited state species, one often looks for curvature in the Stern-Volmer plots and such curvature is not de-

Table II. Quantum Yields of Piperylene and Naphthalene Quenching of trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane Stereoisomerization

Run ${ }^{\text {a }}$	Reactant 4 used, mmol	Quencher ${ }^{b}$ conen, M	Light, mEinstein	4^{d}	Quantum yields	75	$\begin{gathered} {\left[\phi_{6} /\left(\phi_{6}+\phi_{7}\right)\right]} \\ \times 100, \% \end{gathered}$
Q-1	0.297	0.50	0.0204	$0.603(\pm 0.028)$	$0.487(\pm 0.024)$	$0.116(\pm 0.006)$	80.8
Q-2	0.287	1.00	0.0191	$0.516(\pm 0.026)$	$0.424(\pm 0.022)$	$0.0921(\pm 0.0060)$	82.1
Q-3	0.150	1.00	0.0178	$0.467(\pm 0.023)$	$0.382(\pm 0.020)$	$0.0848(\pm 0.0043)$	81.8
Q-4	0.283	1.50	0.0204	$0.428(\pm 0.021)$	0.355 ($\pm 0.019)$	$0.0734(\pm 0.0037)$	82.9
Q-5	0.424	1.00	0.0175	$0.685(\pm 0.033)$	$0.574(\pm 0.028)$	$0.111(\pm 0.006)$	83.9
Q-6	0.715	1.54	0.0173	$0.642(\pm 0.030)$	$0.554(\pm 0.026)$	$0.0875(\pm 0.0043$	86.5

${ }^{a}$ Runs $1-4$ in benzene at 313 nm and 24.0°; $5-6$ at $340 \mathrm{~nm} .{ }^{b}$ Runs $1-4$, piperylene quenching with reactant absorbing over 98.8% of the available light; runs 5-6, naphthalene quenching with reactant absorbing over 96.0% of the available light. e Error estimated from scatter of the data. d Disappearance of trans-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane, taken as the sum of product appearance. e Appearance of cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane. f Appearance of trans-3-p-methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane.

Next, quenching studies were initiated. The two quenchers employed, naphthalene ($E_{\mathrm{T}}=61 \mathrm{kcal} / \mathrm{mol}$) and piperylene ($E_{\mathrm{T}}=59 \mathrm{kcal} / \mathrm{mol}$), were found to quench the stereoisomerization with different efficiencies (note Figures 1-3). Making the assumption that triplet quenching with piperylene occurs with a rate which approaches diffusion control ${ }^{7}$ a rate of rearrangement of
ketones and the known unity crossing efficiency of acetophenone and benzophenone.
(7) This is reasonable since previous studies ${ }^{4 a}$ have shown that a $8 \mathrm{kcal} / \mathrm{mol}$ decrease in quencher triplet energy changed the quenching efficiency only about sixfold. Hence, less than an order of magnitude error should be involved in this estimation of rate of rearrangement.
tectible presently (note Figures 1-3). However, with minor intervention and the usual experimental accuracy such curvature may not be expected to be discerned. Further support for involvement of a second excited species is found in the $\phi_{0} S$ values 8 (note Table III) which are known ${ }^{8}$ to be characteristic of individual excited states and which are unequal for appearance of products 6 and 7.
(8) Here S is the slope. The $\phi_{0} S$ values obtained from Stern-Volmer plots of $1 / \phi$ vs. quencher concentration are equal to the $k_{q} \tau$ values of ϕ / ϕ_{0} treatments. Note H. E. Zimmerman and N. Lewin, J. Amer. Chem. Soc., 91, 879 (1969).

Table III. Slopes and $\phi_{S} S$ Values from Stern-Volmer Plots

	-_-Piperylene-_-_-_-		$\sim_{S \text { (slope) }}$ Naphthalene -	
		$\phi_{0} S\left(k_{q} r\right)$		
Disappearance of trans,trans-4	0.676 ± 0.067	0.495 ± 0.071	0.168 ± 0.004	0.129 ± 0.010
Appearance of cis,trans-6	0.759 ± 0.085	0.453 ± 0.083	0.102 ± 0.006	0.062 ± 0.008
Appearance of trans,cis-7	4.82 ± 0.28	0.743 ± 0.073	3.42 ± 0.25	0.564 ± 0.083

${ }^{a}$ Errors for slopes are standard deviations.

Several explanations are a priori possibilities. First, two totally different electronically excited state reactant species may be involved, one to a lesser extent. However, Table I reveals that the same product distribution is formed in the direct photolyses as in sensitization where

Figure 2. Stern-Volmer plot; appearance of cis-3-p-methoxy-phenyl-trans-2-phenyl-1-benzoylcyclopropane.
T_{1} is known to be the reactant; thus one can conclude that the direct runs also utilize only T_{1}. This leaves only the quenched runs showing evidence of two excited species. One possibility is that quencher reveals the ordinarily very minor participation of a second excited state (T_{2} or S_{1}) by selectively quenching T_{1}. More interesting is the possibility that an exiplex is formed in the quenching process and that this exiplex may either decay or react. Such an exiplex would not be expected to have the same selectivity as the uncomplexed excited triplet T_{1}. A related rationale is that quenching occurs far enough along the reaction coordinate that the identity of the product is already determined and that quenching does not occur with equal efficiency in the pathways leading to the two different products 6 and 7 (note Chart IV). This interesting effect is being pursued further. However in conclusion it should be noted that the effect is a minor one, and in the ordinary and sensitized photolyses the conclusion that T_{1} is primarily responsible is unaffected and the triplet rate calculation is valid to the accuracy usually obtained in such treatments.
Excited State Reactivity. Interpretative Discussion. The preferential formation of the cis,trans isomer 6 in all runs, direct, sensitized, and quenched, has mechanistic
significance. The overall nature of the process is known from the photolysis of optically active trans $3-p$ -cyanophenyl-trans-2-phenyl-1-benzoylcyclopropane, a structurally similar molecule. ${ }^{3}$ The reaction in that case was shown to proceed by way of an excited state which was either electron rich or odd electron in character in the three-membered ring. The present results make it clear that the excited state and the reacting mole-

Figure 3. Stern-Volmer plot; appearance of trans-3-p-methoxy-phenyl-cis-2-phenyl-1-benzoylcyclopropane.
cule are not electron rich but rather have odd electron density in the three ring. The reaction may be interpreted as proceeding with selective fission of bond a followed by a single rotation about the benzylic-benzylic bond c and closure to give the cis,trans isomer 6 in the major pathway. For the minor pathway in analogy to the cyanophenyl study, the trans, cis isomer 7 probably arises from two processes, i.e., from double rotation of the bond a opened species 10 and single rotation of the bond b opened species 9 . This mechanism is summarized in Chart IV.

Experimental Section ${ }^{9}$

Benzyl p-Methoxyphenyl Ketone. This was prepared in 77% yield by the method of Buck and Ide. The melting point after crystallization from hexane was $76-77^{\circ}$ (lit. ${ }^{10} \mathrm{mp} 74-75^{\circ}$).
1- p-Methoxyphenyl-2-phenylethanol. Sodium borohydride (5.50 $\mathrm{g}, 0.145 \mathrm{~mol})$ reduction of $100.0 \mathrm{~g}(0.443 \mathrm{~mol})$ of benzyl p-methoxyphenyl ketone in 1.5 l . of ethanol afforded 1-p-methoxyphenyl-2-

[^1]Chart IV. Formal Mechanism for the Stereoisomerization of trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane

phenylethanol ($71.4 \mathrm{~g}, 0.312 \mathrm{~mol}$) in 71% yield after crystallization from hexane, mp $57-58^{\circ}\left(\right.$ lit. $\left.^{11} \mathrm{mp} 58-59.5^{\circ}\right)$.
trans-1- p-Methoxyphenyl-2-phenylethylene. This was prepared by the dehydration of $40.0 \mathrm{~g}(0.175 \mathrm{~mol})$ of 1-p-methoxyphenyl-2phenylethanol with 0.50 g of p-toluenesulfonic acid in refluxing toluene. After recrystallization from ether-hexane, the yield of trans olefin was $30.7 \mathrm{~g}(83 \%)$, mp $135-136^{\circ}\left(\right.$ lit. $\left.^{12} \mathrm{mp} 136^{\circ}\right)$.
Solvent Benzene. The benzene used for photolysis was purified by stirring with concentrated sulfuric acid and distilling from phosphorus pentoxide.
cis-1-p-Methoxyphenyl-2-phenylethylene. In five runs of 6.5 hr each a total of $41.36 \mathrm{~g}(0.196 \mathrm{~mol})$ of trans-1- p-methoxyphenyl-2-phenylethylene in a total of 8.75 l . of purified benzene was irradiated under deoxygenated nitrogen ${ }^{13}$ through a Corex filter ($\lambda>250 \mathrm{~nm}$) with a Hanovia $450-\mathrm{W}$ medium-pressure immersion mercury lamp. Recrystallization of the combined photolysates from ether-hexane afforded 18.71 g of trans olefin. The residues were chromatographed on a $4.5 \times 70 \mathrm{~cm}$ column of alumina (Fisher, adsorption grade) slurry-packed in 2% ether in hexane. Elution in $225-\mathrm{ml}$ fractions gave: fractions $1-5,3 \%$ ether in hexane, nil; $6-21,5 \%, 19.5 \mathrm{~g}$ of cis-1-p-methoxyphenyl-2-phenylethylene; 22, 8%, nil; $23-33,20 \%, 1.30 \mathrm{~g}$ of trans olefin. The yield of cis olefin, a clear, viscous liquid, ${ }^{12}$ was 47%. The spectral data were ir (neat) $3.25-3.5,6.2,6.6,8.5,9.68,12.0,13.45$, and $14.35 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\tau 2.7-3.6(\mathrm{~m}, 11 \mathrm{H}$, arom, $\mathrm{CH}=\mathrm{CH}), 6.4\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)\left(\mathrm{lit} .{ }^{12} \mathrm{nmr}\right.$ $\tau 6.5 \pm 0.1$).
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-cyclopropanecarboxylic Acid. Ethyl diazoacetate ($40.0 \mathrm{~g}, 0.351 \mathrm{~mol}$) was added dropwise with stirring over 5 hr to $23.56 \mathrm{~g}(0.112 \mathrm{~mol})$ of cis-1-($p-$ methoxyphenyl)-2-phenylethylene and 4.00 g of copper-bronze (Luco No. 16, Leo Uhlfelder Co., N. Y., analyzed for $99.5+\%$ copper) maintained at 120° under nitrogen. The cooled reaction mixture was filtered and refluxed with 10.0 g of sodium hydroxide in 200 ml of ethanol. After concentration under reduced pressure the mixture was diluted with water and ether extracted; the ether extracts were dried and concentrated to give 6.56 g of cis olefin. The aqueous layer from the saponification was acidified and ether extracted. Concentration afforded a brown oil which was eluted
(11) M. A. Orekhoff and M. Tiffeneau, Bull. Soc. Chim. Fr., 37, 1414(1925).
(12) O. W. Wheeler and H. N. Batlle de Pabon, J. Org. Chem., 30, 1473 (1965)
(13) L. Meites and T. Meites, Anal. Chem., 20, 984 (1948).
with 40% ether in hexane through a $4 \times 50 \mathrm{~cm}$ column of silica gel (Davison 950, 60-200 mesh). The recovered orange oil, 16.8 g , was rechromatographed on a similar column. The fraction volume was 200 ml and fractions $4-16,35 \%$ ether in hexane, contained 14.6 g of the cyclopropanecarboxylic acid. Recrystallization from chloroform-hexane gave 8.69 g (40% yield based on consumed olefin) of trans-3-p-methoxyphenyl-trans-2-phenyl-1-cyclopropanecarboxylic acid, mp 121-123 ${ }^{\circ}$. The spectral data were ir (CS_{2}) $3.0-4.35,5.9,7.75,8.0,8.25,8.6,9.6,12.15,13.2$, and 14.4μ; nmr $\left(\mathrm{CDCl}_{3}\right) \tau-2.1(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{COOH}), 2.8-3.4(\mathrm{~m}, 9 \mathrm{H}$, arom), 6.3 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 6.9 (d, 2 H , cyclopropyl ring $\mathrm{CH}-\mathrm{CH}$), 7.5 (t, 1 H , cyclopropyl CHCOOH).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$: $\mathrm{C}, 76.10 ; \mathrm{H}, 6.01$. Found: C , 76.01; H, 6.03 .

Reaction of Diazoacetophenone with cis-1-p-Methoxyphenyl-2phenylethylene. Diazoacetophenone ${ }^{14}(13.0 \mathrm{~g}, 88.6 \mathrm{mmol})$ in 25 ml of xylene was added dropwise with stirring over 2.5 hr to 22.3 g (0.109 mol) of cis-1-p-methoxyphenyl-2-phenylethylene and 0.60 g of copper-bronze maintained at 130° under nitrogen. The cooled reaction mixture was filtered and concentrated in vacuo. The residue was chromatographed on a $4 \times 70 \mathrm{~cm}$ silica gel column slurry-packed in 3% ether in hexane. Elution in $200-\mathrm{ml}$ fractions gave: fractions $6-9,8 \%$ ether in hexane, 18.2 g of cis olefin; $14-23,18 \%, 11.4 \mathrm{~g}$ of cyclopropyl ketone in yellow oil. Extensive crystallization from hexane-ether and from methanol gave 3.69 g (57% yield based on consumed olefin) of trans-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane, mp 83-85 ${ }^{\circ}$.

The spectral data were uv (EtOH) $\lambda_{\max } 233 \mathrm{~nm}(\epsilon 22,100), 275 \mathrm{sh}$ (6500); ir (CS_{2}) 3.2-3.5, 6.0, 7.8, 8.0, 8.23, 8.5, 9.65, 12.15, 13.5, and $14.9 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 1.8-2.0(\mathrm{~m}, 2 \mathrm{H}$, arom ortho to $\mathrm{C}=\mathrm{O})$, 2.4-2.5 (m, 2 H , arom meta to $\mathrm{C}=\mathrm{O}$), 2.8-3.5 ($\mathrm{m}, 10 \mathrm{H}$, arom), $6.34\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.35-6.8(\mathrm{~m}, 3 \mathrm{H}$, cyclopropyl ring CHCH$)$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 84.12; H, 6.14. Found: C, 83.89; H, 6.01 .
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-cyclopropanecarboxylic acid chloride was formed from $2.683 \mathrm{~g}(10.0 \mathrm{mmol})$ of the corresponding acid (vide supra) by refluxing for 15 min with 10 ml of thionyl chloride, followed by concentration.

A solution of the acid chloride in 20 ml of benzene was added dropwise to a vigorously stirred solution of diphenylcadmium at 0° in 250 ml of benzene. The diphenylcadmium was prepared from
(14) M. Newman and P. Beal, J. Amer. Chem. Soc., 71, 1506 (1949).
5.01 g (27.4 mmol) of anhydrous cadmium chloride added to the Grignard reagent formed from $1.49 \mathrm{~g}(61.5 \mathrm{mg}$-atoms) of magnesium and 3.0 ml (28.7 mmol) of bromobenzene. The reaction was stirred for 1 hr at 25°, then hydrolyzed with saturated aqueous ammonium chloride, ether extracted, and concentrated to give 3.26 g of oily ketone. This was chromatographed on a $4 \times 50 \mathrm{~cm}$ silica gel column slurry-packed in 4% ether in hexane. Elution was in $200-\mathrm{ml}$ fractions with fractions $13-21,18 \%$ ether in hexane, affording 2.60 g of cyclopropyl ketone. This was rechromatographed on a $2.5 \times 100 \mathrm{~cm}$ silica gel column, similarly packed. Fractions 7-14, 18% ether in hexane, contained 2.54 g of ketone. Crystallization from hexane-ether afforded 1.89 g (58% yield) of trans-3- p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane, $\mathrm{mp} 83-85^{\circ}$. The nmr and ir spectra were superimposable with those of this compound prepared by the alternative synthetic method above and a mixture melting point showed no depression.
Reaction of Diazoacetophenone with trans-2-p-Methox yphenyl-1phenylethylene. Diazoacetophenone ($14.3 \mathrm{~g}, 97.3 \mathrm{mmol}$) in 30 ml of xylene was added dropwise with stirring over 3 hr to a mixture of $15.1 \mathrm{~g}(71.8 \mathrm{mmol})$ of trans-2-p-methoxyphenyl-1-phenylethylene, 0.50 g of copper-bronze, and 30 ml of xylene maintained at 125° under nitrogen. A benzene solution of the reaction mixture was filtered to remove the copper and concentrated in vacuo. The residue was chromatographed on a $3.5 \times 60 \mathrm{~cm}$ silica gel column slurry-packed in 4% ether in hexane. Elution in 400 -ml fractions gave: fractions $4-14,8 \%$ ether in hexane, 10.1 g of trans olefin; $27-44,14 \%, 5.53 \mathrm{~g}$ of isomeric ketones in yellow oils. This mixture was rechromatographed on a similar column. The fraction volume was 500 ml and fractions $17-24,8 \%$ ether in hexane, contained 4.76 g (61% yield based on consumed olefin) of trans-3-p-methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane and cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzocyclopropane.
This mixture was separated by preparative tic on $25 \times 25 \mathrm{~cm}$ plates coated with a slurry of 50 g of silica gel (Brinkman GF_{254}) in 90 ml of water and activated for 3 hr at 100°. Mixtures were applied and alternatively eluted and dried (multidevelopment) with benzene until separation was observed under ultraviolet light. ${ }^{15}$ The zone containing each component was ether extracted.
The first zone, R_{f} ca. 0.16, was ether extracted. Concentration and crystallization from hexane-ether gave trans-3-p-methoxy-phenyl-cis-2-phenyl-1-benzoylcyclopropane, mp 111-112 ${ }^{\circ}$. The spectral data were uv (EtOH) $\lambda_{\text {max }} 231 \mathrm{~nm}(\epsilon 23,000), 275 \mathrm{sh}(7000)$; ir $\left(\mathrm{CS}_{2}\right) 3.25-3.53,6.0,7.9,8.0,8.28,8.5,9.65,9.80,12.25,13.8$, and $14.45 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.0-2.2(\mathrm{~m}, 2 \mathrm{H}$, arom ortho to $\mathrm{C}=\mathrm{O})$, 2.4-3.2 (m, 12 H, arom), $6.22\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.3-6.8(\mathrm{~m}, 3 \mathrm{H}$, cyclopropyl ring CHCH).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 84.12 ; \mathrm{H}, 614$. Found: C, 84.36; H, 6.31 .

Similar work-up of the second zone, R_{f} ca. 0.14 , gave cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane, mp 132$133^{\circ}$ after crystallization from hexane-ether. The spectral data were uv (EtOH) $\lambda_{\text {max }} 230 \mathrm{~nm}(\epsilon 24,500), 275 \mathrm{sh}(6050)$; ir (CS_{2}) $3.25-3.53,6.0,8.0,8.25,8.5,9.6,12.23,13.45$, and 14.4μ; nmr $\left(\mathrm{CDCl}_{3}\right) \tau 1.9-2.1(\mathrm{~m}, 2 \mathrm{H}$, arom ortho to $\mathrm{C}=0), 2.4-3.3(\mathrm{~m}, 12 \mathrm{H}$, arom), $6.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.3-6.8(\mathrm{~m}, 3 \mathrm{H}$, cyclopropyl ring CHCH).
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}$: C, $84.12 ; \mathrm{H}, 6.14$. Found: C, 84.00; H, 5.93 .

Reaction of Ethyl Diazoacetate with trans-1-p-Methoxyphenyl-2phenylethylene and Saponification. Ethyl diazoacetate (40.0 g , 0.351 mol) in 10 ml of xylene was added dropwise with stirring over 8 hr to $45.8 \mathrm{~g}(0.217 \mathrm{~mol})$ of t tans-1- p-methoxyphenyl-2phenylethylene and 4.5 g of copper-bronze maintained at 145° under nitrogen. A benzene solution of the cooled reaction mixture was filtered and concentrated in vacuo. The residue was refluxed for 1.5 hr with 10.0 g of sodium hydroxide in 200 ml of ethanol. After concentration under reduced pressure, the mixture was diluted with water and ether extracted. trans olefin, 24.1 g after crystallization from methanol, mp 133-134 ${ }^{\circ}$, was obtained from the ether layer. The aqueous layer from the saponification was acidified and ether extracted. Concentration afforded a brown oil which was eluted with 35% ether in hexane through a $4 \times 50 \mathrm{~cm}$ silica gel column slurry-packed in 20% ether in hexane to give a white solid in yellow oil. Recrystallization from methanol gave $11.4 \mathrm{~g}(41 \%$ yield based on consumed olefin) of a not readily separable mixture of trans-3-p-methoxyphenyl-cis-2-phenyl-1-cyclopropanecarboxylic

[^2]acid and cis-3-p-methoxyphenyl-trans-2-phenylcyclopropanecarboxylic acid, $\mathrm{mp} 135-165^{\circ}$. The spectral data were ir (CS_{2}) 3.2-4.0, $5.9,7.0,8.0,9.65,12.2$, and $14.45 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau-0.8$ (br s, $1 \mathrm{H}, \mathrm{COOH}), 2.8-3.4\left(\mathrm{~m}, 9 \mathrm{H}\right.$, arom), $6.29\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 6.68-$ 8.0 ($\mathrm{m}, 3 \mathrm{H}$, cyclopropyl ring CHCH).
trans-3-p-Methoxylphenyl-cis-2-phenyl-1-benzoylcyclopropane and cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane. The acid chlorides were formed from $2.00 \mathrm{~g}(7.50 \mathrm{mmol})$ of a mixture of trans-3-p-methoxyphenyl-cis-2-phenyl-1-cyclopropanecarboxylic acid by refluxing for 15 min with 10 ml of thionyl chloride, followed by concentration.
A solution of the acid chlorides in 20 ml of benzene was added dropwise to a vigorously stirred solution of diphenylcadmium at 0° in 250 ml of benzene. The diphenylcadmium was prepared from 6.90 g (37.5 mmol) of anhydrous cadmium chloride added to the Grignard reagent formed from $0.950 \mathrm{~g}(37.5 \mathrm{mg}$-atoms) of magnesium and $4.0 \mathrm{ml}(37.5 \mathrm{mmol})$ of bromobenzene. The reaction was stirred for 1 hr at 25°, then hydrolyzed with saturated aqueous ammonium chloride, ether extracted, and concentrated to give 3.08 g of oily ketone mixture. This was chromatographed on a $4 \times$ 50 cm silica gel column slurry-packed in 4% ether in hexane. Elution was in $200-\mathrm{ml}$ fractions with fractions $15-27,16 \%$ ether in hexane, affording 1.39 g of ketone mixture. This mixture, 1.27 g , was separated by preparative tlc (vide supra for method). The first zone, R_{f} ca. 0.16 , afforded 0.432 g of trans- $3-p$-methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane, mp 110-111 ${ }^{\circ}$ after crystallization from hexane-ether. The nmr and ir spectra were identical with those of this compound obtained by the alternative synthetic method above and a mixture melting point showed no depression. The second zone, R_{f} ca. 0.14 , gave 0.755 g of cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane, mp 132-133 after crystallization from hexane-ether. The nmr and ir spectra were identical with those of this compound obtained by the alternative synthetic method above and a mixture melting point showed no depression. The yield was 48%.
$p^{2} \mathrm{H}$-Bromobenzene. A modification of the procedure of Weldon and Wilson ${ }^{16}$ for the preparation of p - d-bromobenzene was used. p Bromophenylmagnesium bromide formed from 1.214 g ($50.0 \mathrm{mg}-$ atoms) of magnesium and 11.80 g (50.0 mmol) of p-dibromobenzene in 100 ml of anhydrous ether was hydrolyzed with $0.380 \mathrm{ml}(22.1 \mathrm{~m}-$ mol) of tritium oxide (84.4 mCi , Volk Radiochemicals). The hydrolysis was completed with excess saturated aqueous ammonium chloride, followed by ether extraction. After drying with sodium sulfate and concentration, $p-{ }^{3} \mathrm{H}$-bromobenzene, bp $150-152^{\circ}$, was isolated by short-path distillation. The labeled product was diluted and removed from the distillation apparatus by three successive distillations of $1.0-\mathrm{ml}$ portions of unlabeled bromobenzene to give a total of 6.65 g .
trans-3- p-Methoxyphenyl-trans-2-phenyl-1-($p-{ }^{3} \mathrm{H}$-benzoyl)cyclopropane. The acid chloride was formed from $2.683 \mathrm{~g}(10.0 \mathrm{mmol})$ of trans-3-p-methoxyphenyl-trans-2-phenyl-1-cyclopropanecarboxylic acid by refluxing for 15 min with 10 ml of thionyl chloride, followed by concentration.

A solution of the acid chloride in 20 ml of benzene was added dropwise to a vigorously stirred solution of di-p- ${ }^{3} \mathrm{H}$-phenylcadmium, at 0° in 250 ml of benzene. The diphenylcadmium had been prepared from 5.21 g (30.0 mmol) of anhydrous cadmium chloride added to the Grignard reagent formed from 1.49 g (59.0 mg -atoms) of magnesium and $6.65 \mathrm{~g}(40.0 \mathrm{mmol})$ of $p-{ }^{3} \mathrm{H}$-bromobenzene. The reaction was stirred for 1 hr at 25° and was hydrolyzed with ammonium chloride. The washed, dried, and concentrated ether extracts gave 3.42 g of clear oil which was chromatographed on a $4 \times 50 \mathrm{~cm}$ silica gel column slurry-packed in 4% ether in hexane. Elution was in $200-\mathrm{ml}$ fractions; fractions $14-22,18 \%$ ether in hexane, gave 2.87 g of oily ketone which was purified by preparative tlc (vide supra for method). The first zone, R_{f} ca. 0.22, gave 2.369 g of clear oil which was recrystallized from hexane-ether to afford 2.01 g (60%) of trans-3-p-methoxyphenyl-trans-2-phenyl $1-\left(p-{ }^{3} \mathrm{H}-\right.$ benzoyl)cyclopropane, $\mathrm{mp} 82-84^{\circ}$, specific activity $559 \mathrm{nCi} / \mathrm{mg}$. The nmr spectrum (CDCl_{3}) was superimposable with that of the unlabeled compound and a mixture melting point showed no depression. The second zone, $R_{\mathrm{f}} \mathrm{ca} .0 .13$, gave 0.284 g of white solid which was recrystallized from hexane-ether to give $0.204 \mathrm{~g}(6 \%)$ of cis-3-p-methoxyphenyl-trans-2-phenyl-1-(p - ${ }^{3} \mathrm{H}$-benzoyl)cyclopropane (identified by nmr), mp 131-132 ${ }^{\circ}$.

Benzyl p-Methoxyphenyl Ketone- d_{2}. Benzyl p-methoxyphenyl ketone ($30.0 \mathrm{~g}, 0.13 \mathrm{~mol}$), in 80 ml of anhydrous, purified p-diox-

$$
\text { (16) L. H. P. Weldon and C. L. Wilson, J. Chem. Soc., } 235 \text { (1946). }
$$

ane ${ }^{17}$ was added to sodium deuterioxide prepared from $3.5 \mathrm{~g}(0.15$ g -atom) of sodium and 25 ml of deuterium oxide. After stirring for 24 hr under nitrogen, the solution was diluted with anhydrous ether and the aqueous layer was decanted. The (sodium sulfate) dried, concentrated ether layer afforded 29.3 g of ketone with ca. 90% deuterium incorporation (nmr analysis). Recycling under identical conditions gave 29.1 g of benzyl p-methoxyphenyl ketone- d_{2} (100% deuterium incorporation by nmr), $\mathrm{mp} 74.5-76^{\circ}$. The spectral data were ir $\left(\mathrm{CS}_{2}\right) 3.2-3.5,6.0,7.6,8.0,8.55,9.7,12.0,12.45$, and 13.7-14.5 $\mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau \mathrm{AB}$ quartet centered at $2.58\left(J_{\mathrm{AB}}\right.$ $=9 \mathrm{~Hz}, 4 \mathrm{H}$, arom), $2.75\left(\mathrm{~s}, 5 \mathrm{H}\right.$, arom), and $6.2\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
1- p-Methoxyphenyl-2-phenyl-2,2- d_{2}-ethanol. To a solution of $29.07 \mathrm{~g}(0.13 \mathrm{~mol})$ of benzyl p-methoxyphenyl ketone- d_{2} in 350 ml of anhydrous p-dioxane and 10 ml of deuterium oxide at 0° was added $4.5 \mathrm{~g}(0.12 \mathrm{~mol})$ of sodium borohydride. After stirring for 10 hr at 25°, the reaction was hydrolyzed and ether extracted. The clear oil obtained from the dried, concentrated ether layer was crystallized from hexane-ether to give $22.8 \mathrm{~g}(78 \%)$ of $1-p$-methoxyphenyl-2-phenyl-2,2- d_{2}-ethanol, mp $56.5-5-58^{\circ}$. The spectral data were ir $\left(\mathrm{CS}_{2}\right)$ 2.75-3.05, 3.2-3.55, 6.20, 7.65, 8.0, 8.5, 9.6, 12.0, 13.75, and $14.3 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.8-3.3(\mathrm{~m}, 9 \mathrm{H}$, arom), $5.3(\mathrm{~s}, 1 \mathrm{H}$, -CHO), 6.3 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), and 7.75 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{OH}$).
trans-1- p-Methoxyphenyl-2-phenyl-2- d-ethylene. The methyl xanthate of $1-p$-methoxyphenyl-2-phenyl-2,2- d_{2}-ethanol $(46.8 \mathrm{~g}, 0.205$ mol) was prepared by the method of Roberts and Sauer ${ }^{18}$ from 6.0 g $(0.205 \mathrm{~mol})$ of sodium hydride, $20.0 \mathrm{ml}(0.205 \mathrm{~mol})$ of carbon disulfide, and $20.0 \mathrm{ml}(0.205 \mathrm{~mol})$ of methyl iodide in anhydrous benzene. The crude xanthate was pyrolyzed at 160° for 1 hr . Crystallization of the pyrolysate from hexane-ether afforded 15.4 g of trans-1-p-methoxyphenyl-2-phenyl-2- d-ethylene. The filtrate material was chromatographed on a $4 \times 50 \mathrm{~cm}$ alumina column slurry-packed in 3% ether in hexane. The fraction volume was 200 mland fractions $9-19,15 \%$ ether in hexane, contained 2.1 g of olefin. After recrystallization from hexane-ether, the yield of trans-1-p-methoxyphenyl-2-phenyl-2- d-ethylene was $17.5 \mathrm{~g}(40.7 \%)$, $\mathrm{mp} 134-$ 136°. The spectral data were ir (CS_{2}) 3.2-3.55, $6.25,8.0,8.5,9.6$, $11.13,12.1,12.93,14.35$, and $14.5 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 2.5-3.2$ (m, 10 H , arom, $=\mathrm{CH}$), $6.25\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
cis-1- p-Methoxyphenyl-2-phenyl-2- d-ethylene. In three runs of 6 hr each a total of 10.67 g (50.2 mmol) of trans-1- p-methoxyphenyl-2-phenyl-2- d-ethylene in a total of 4.51 . of benzene was irradiated under deoxygenated nitrogen ${ }^{13}$ through a Corex filter ($\lambda>250$ nm) with a Hanovia 450 -W medium-pressure immersion mercury lamp. The combined photolysates were crystallized from hexaneether to give 2.85 g of trans olefin. The filtrate material was chromatographed on a $4 \times 40 \mathrm{~cm}$ alumina column slurry-packed in 5% ether in hexane. Elution in $200-\mathrm{ml}$ fractions gave: fractions $4-12$, 12% ether in hexane, 4.86 g of cis-1- p-methoxyphenyl-2-phenyl-2- d ethylene (45.5% yield); $13-25,22 \% 1.41 \mathrm{~g}$ of trans olefin.

The spectral data for the cis olefin were ir (neat) $3.25-3.52,6.25$, $6.65,7.75,8.05,8.55,9.7,11.75-12.55,13.3,13.6$, and 14.4μ; nmr $\left(\mathrm{CDCl}_{3}\right) \tau 2.70-3.60(\mathrm{~m}, 10 \mathrm{H}$, arom, $\mathrm{C}=\mathrm{CH}), 6.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$.
Reaction of Diazoacetophenone with cis-1- p-Methoxyphenyl-2-phenyl-2- d-ethylene. Diazoacetophenone ($13.3 \mathrm{~g}, 90.4 \mathrm{mmol}$) in 25 ml of xylene was added dropwise with stirring over 4 hr to a mixture of 4.70 g (22.4 mmol) of cis-1-p-methoxyphenyl-2-phenyl2 - d-ethylene, 0.47 g of copper-bronze, and 5.0 ml of xylene maintained at 130° under nitrogen. The cooled reaction mixture was filtered and concentrated in vacuo. The residue was chromatographed on a $4.5 \times 50 \mathrm{~cm}$ silica gel column slurry-packed in 3% ether in hexane. The fraction volume was 200 ml and fractions $11-21,16 \%$ ether in hexane, contained 5.04 g of oily ketone. After rechromatography on a similar column, 2.72 g of ketone was recovered. Crystallization three times from hexane-ether afforded $0.960 \mathrm{~g}(17 \%)$ of trans-3-p-methoxyphenyl-trans-2-phenyl-2-d-1benzoylcyclopropane, $m p$ 83-84 ${ }^{\circ}$. The spectral data were uv (EtOH) $\lambda_{\text {max }} 230 \mathrm{~nm}(\epsilon 22,900), 275 \mathrm{sh}(6900)$; ir (CS_{2}) $3.25-3.55$, $6.0,7.15,7.80,8.0,8.25,9.7,9.85,12.25,13.1,13.7,14.4$, and 15.4 $\mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 1.78-3.42(\mathrm{~m}, 14 \mathrm{H}$, arom $), 6.32\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, AB quartet centered at $6.63\left(J_{\mathrm{AB}}=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, cyclopropyl ring CHCH).

The aryl and methoxyl portions of the nmr spectrum were superimposable in all respects with that of the unlabeled compound and a mixture melting point showed no depression.
(17) L. F. Fieser, "Experiments in Organic Chemistry," D. C. Heath and Co., Boston, 1955, p 285, method A.
(18) J. D. Roberts and C. W. Sauer, J. Amer. Chem. Soc., 71, 3925 (1949).

Reaction of Ethyl Diazoacetate with trans-1-p-Methoxyphenyl-2-phenyl-2- d-ethylene and Saponification. Ethyl diazoacetate (36.7 $\mathrm{g}, 0.322 \mathrm{~mol}$) in 10 ml of xylene was added dropwise with stirring over 7 hr to a mixture of $20.0 \mathrm{~g}(95.3 \mathrm{mmol})$ of trans-1-p-methoxy-phenyl-2-phenyl-2- d-ethylene and 0.50 g of copper-bronze maintained at 145° under nitrogen. After filtration and concentration of a benzene solution of the reaction mixture, the residue was refluxed for 2.5 hr with a solution of 18.2 g of sodium hydroxide in 225 ml of ethanol. Ether extraction and concentration gave 7.59 g of trans olefin, mp after crystallization $135-137^{\circ}$. The aqueous layer from the saponification was acidified and ether extracted. Concentration afforded a brown oil which was chromatographed on a $4 \times 50 \mathrm{~cm}$ silica gel column slurry-packed in 5% ether in hexane. The fraction volume was 200 ml and fractions $17-29$, 35% ether in hexane, contained 7.68 g of cyclopropane acids in yellow oil. Recrystallization from methanol afforded $4.64 \mathrm{~g}(25 \%$ yield based on consumed olefin) of a not readily separable mixture of trans-3-p-methoxyphenyl-cis-2-phenyl-2-d-1-cyclopropanecarboxylic acid and cis-3-p-methoxyphenyl-trans-2-phenyl-2-d-1-cyclopropanecarboxylic acid, $\mathrm{mp} 135-165^{\circ}$. The spectral data were ir $\left(\mathrm{CHCl}_{3}\right) 3.0-4.8,5.9,6.95,7.9-8.3,9.7,12.1$ and 14.4μ; nmr $\left(\mathrm{CDCl}_{3}\right) \tau-0.8$ (br s, $\left.1 \mathrm{H},-\mathrm{COOH}\right), 2.7-3.2(\mathrm{~m}, 9 \mathrm{H}$, arom), 6.2 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$), 6.7-7.8 (m, 2 H , cyclopropyl CHCH).
trans-3- p-Methoxyphenyl-cis-2-phenyl-2-d-1-benzoylcyclopropane and cis-3-p-Methoxyphenyl-trans-2-phenyl-2- d-1-benzoylcyclopropane. Phenyllithium (21.0 ml of 2.0 M in ether, 42.0 mmol) was added dropwise with vigorous stirring to a $4.63-\mathrm{g}$ (17.3 mmol) mixture of trans-3-p-methoxyphenyl-cis-2-phenyl-2-d-1-cyclopropanecarboxylic acid and cis-3-p-methoxyphenyl-trans-2-phenyl-2- d -1-cyclopropanecarboxylic acid in 100 ml of anhydrous ether at 0° under nitrogen. The reaction was hydrolyzed and ether extracted; the extracts were concentrated to give 7.95 g of oil prior to chromatography. The remaining aqueous layer was acidified, ether extracted, and concentrated to give $0.333 \mathrm{~g}(1.24 \mathrm{mmol})$ of cyclopropane acids. The oily ketone mixture was chromatographed on a $4 \times 50 \mathrm{~cm}$ silica gel column slurry-packed in 3% ether in hexane. Elution in $200-\mathrm{ml}$ fractions gave: fractions $16-22,15 \%$ ether in hexane, 2.99 g (56% yield based on consumed acid) of a ca. $1: 1$ (by nmr analysis) mixture of trans-3- p-methoxyphenyl-cis-2-phenyl-2- d-1-benzoylcyclopropane and cis-3-p-methoxyphenyl-trans-2-phenyl-2- d-1-benzoylcyclopropane. These isomers were separated by preparative tlc (cide supra for method).

The first zone, $R_{f} c a .0 .16$, gave trans-3-p-methoxyphenyl-cis-2-phenyl-2- $d-1$-benzoyicyclopropane, $\mathrm{mp} 110-111^{\circ}$ after crystallization from hexane-ether. The spectra data were uv (EtOH) $\lambda_{\text {max }} 231 \mathrm{~nm}(\epsilon 23,300), 275 \mathrm{sh}(7200)$; ir (CS_{2}) $3.2-3.6,6.0,8.0$, $8.25,8.6,9.65,9.8,12.15,13.7$, and $14.45 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ - $1.95-$ $2.15(\mathrm{~m}, 2 \mathrm{H}$, arom, ortho to $\mathrm{C}=\mathrm{O}), 2.5-3.2(\mathrm{~m}, 12 \mathrm{H}$, arom), 6.24 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), AB quartet centered at $6.57\left(J_{\mathrm{AB}}=5.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, cyclopropyl ring CHCH).

The second zone, $R_{\mathrm{f}} c a .0 .14$, gave cis-3-p-methoxyphenyl-trans-2-phenyl-2- d-1-benzoylcyclopropane, mp 131-133 ${ }^{\circ}$ after crystallization from hexane-ether. The spectral data were uv (EtOH) $\lambda_{\text {max }}$ $229 \mathrm{~nm}(\epsilon 24,500), 275 \mathrm{sh}(6030)$; ir (CS_{2}) 3.25-3.55, 6.0, 8.0, 8.3, 8.5, $9.65,9.9,12.1,13.6$, and $14.4 \mu ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \tau 1.85-2.03$ (m, 2 H , arom ortho to $\mathrm{C}=\mathrm{O}$), $2.35-3.20(\mathrm{~m}, 12 \mathrm{H}$, arom), $6.25(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, AB quartet centered at $6.70\left(J_{\mathrm{AB}}=9.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, cyclopropyl ring CHCH).

Exploratory Photolysis of trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane. A solution of $0.461 \mathrm{~g}(1.41 \mathrm{mmol})$ of trans-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane in 700 ml of purified benzene was irradiated for 20 min under deoxygenated nitrogen ${ }^{13}$ through Pyrex with a Hanovia 450-W medium-pressure immersion mercury lamp. The solvent was removed in cacuo and the residue was subjected to liquid-liquid partition chromatography ${ }^{19}$ using a $4.5 \times 150 \mathrm{~cm}$ column and a twophase system of cyclohexane-dimethylformamide-ethyl acetatewater ($100: 40: 25: 3$, $v: v$). The fraction volume was 20 ml and fractions $61-72$ contained 17.8 mg of an unidentified yellow oil; $77-94,133.3 \mathrm{mg}$ of reactant ketone; $85-114,305.8 \mathrm{mg}$ of a ca. $3: 1$ mixture of cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane and trans-3-p-methoxypheny1-cis-2-phenyl-1-benzoylcyclopropane. Analysis of the stereoisomers was by nmr integration of the methoxyl resonances at $\boldsymbol{\tau} 6.29$ and 6.22 . This mixture was separated by preparative tlc (vide supra for method). After 5 elutions with benzene, two bands were observed, $R_{\mathrm{f}} c a .0 .16$ and
(19) H. E. Zimmerman and D. I. Schuster, ibid., 84, 4527 (1962).
$R_{i} c a .0 .14$. Ether extraction and concentration of the first gave 68.1 mg of clear oil, identified by nmr as trans-3- p-methoxyphe-nyl-cis-2-phenyl-1-benzoylcyclopropane, melting point after crystallization from hexane-ether, $110-112^{\circ}$. The second band, after similar work-up, gave 228.3 mg of white solid, identified by nmr as cis-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane, melting point after crystallization from hexane-ether, 132-133.

Quantum Yield Equipment. The basic apparatus employed by Zimmerman and Hancock ${ }^{\text {4a }}$ was used. Irradiations were carried out on an L-shaped optical bench in quartz-faced, ${ }^{20}$ thermostated cells under deoxygenated nitrogen, and with stirring. One actinometer cell was situated perpendicularly to the main beam path in order to receive the light deflected from a beam splitter consisting of a $2 \times 2 \times 1 / 1 \mathrm{i}$ in. quartz plate mounted at 45°. The light source was an Osram HBO 200-W super-pressure mercury lamp in series with a Bausch and Lomb high-intensity monochromator.
Quantum Yield Irradiations. The basic procedure for each determination consisted of three runs. In the first and third, actinometer solution was contained in two consecutive, identical cells and in the side cell. In the second run, the reactant solution was contained in the first cell and actinometer in the second and side cells. The transmission to reflection ratio of the beam splitter (ca. 10:1) was calculated for runs 1 and 3 . The light incident to the sample cell was calculated from this ratio and the light deflected to the side cell. Available light was corrected for light transmitted to the second cell (less than 5%) and, when necessary, for direct absorption of light by reactant in sensitized runs or for direct absorption by quencher in quenched runs.

Ca. 0.003-005 M solutions of radioactive reactant in benzene were irradiated at 24.0°. Ultraviolet spectra recorded before and after photolysis agreed with calculated spectra assuming Beer's law. Weighed aliquots of the ${ }^{3} \mathrm{H}$-photolysate were withdrawn for isotopic dilution with weighed excesses of unlabeled photoisomers and reactant ketone. After dilution, each mixture was concentrated in vacuo to remove solvent (and quencher or sensitizer when present). The diluted photoisomers were recrystallized to constant activity using hexane-ether. The diluted reactant was purified by preparative tlc (vide supra for method) prior to determination of specific activity.
A control dilution indicated that 0.06% of $c i s$-3-p-methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane and 0.02% of trans-3-p-methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane were present in radioactive reactant. Final specific activities of diluted photoisomers were corrected for these readings and for blanks determined on the unlabeled compounds.
Potassium Ferrioxalate Actinometry. ${ }^{21}$ Potassium ferrioxalate actinometry was employed. Absorbance of the ferrous phenanthroline complex was measured at 510 nm on a Beckman Model DU spectrometer with absorbance readout. The apparatus was calibrated ${ }^{4 \mathrm{a}}$ at 366 nm with uranyl oxalate actinometry.
Specific Activity of ${ }^{3} \mathrm{H}$ Compounds. Determinations were made by liquid scintillation counting using a Nuclear-Chicago Mark I scintillation system.
Sensitizers and Quenchers. Piperylene (Aldrich) was distilled at atmospheric pressure with a $25: 1$ reflux ratio. Naphthalene (Allied Chemicals) was recrystallized from methanol and sublimed at 0.1 mm and $50^{\circ}, \mathrm{mp} 80-80.5^{\circ}$. Acetophenone (Matheson) was distilled, bp $42^{\circ}(0.1 \mathrm{~mm})$.

Quantum Yield Summaries. Data for individual runs are listed as follows: first, conditions for irradiation of ${ }^{3} \mathrm{H}$-labeled reactant (weight, solvent (including sensitizer or quencher, where present), wavelength, and amount of light), followed by isotope dilution data. The weight of each unlabeled isomer used to dilute an aliquot of the labeled photolysate is followed by the number of the final recrystallization, recovered weight, melting point, asymptotic specific activity with error obtained from scatter of data; calculated amount of product or reactant recovered; quantum yield. The quantum yield for disappearance of reactant was obtained only as the quantum yield for the appearance of products, since the low conversions made the absolute errors in amounts of reactant recovered and consumed comparable in magnitude to their difference.

Run 1. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclo-propane- ${ }^{3} \mathrm{H}$ ($117.9 \mathrm{mg}, 0.359 \mathrm{mmol}$) had specific activity 194 ± 1 $\mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of benzene, irradiated at 313 nm (band width 22 nm), 0.101 m Einstein.

[^3]trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($174.7 \mathrm{mg}, 0.532 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($28.206 \mathrm{mg}, 0.0859$ mmol): 2 (after tlc); $0.121 \mathrm{mg}, 83-85^{\circ}, 21.1 \pm 0.1 \mu \mathrm{Ci} / \mathrm{mmol}$; 0.228 mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($41.9 \mathrm{mg}, 0.432 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($16.884 \mathrm{mg}, 0.0514$ $\mathrm{mmol}): 7.35 \mathrm{mg}, 132-133^{\circ}, 328 \pm 3 \mathrm{nCi} / \mathrm{mmol} ; 0.0553 \mathrm{mmol} ; \phi=$ 0.548 ± 0.027.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($116.1 \mathrm{mg}, 0.354 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($8.0877 \mathrm{mg}, 0.0246$ $\mathrm{mmol}): 7,29 \mathrm{mg}, 110-112^{\circ}, 470 \pm 7 \mathrm{nCi} / \mathrm{mmol} ; 0.0131 \mathrm{mmol} ; \phi=$ 0.130 ± 0.007.

Run 2. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclo-propane- ${ }^{-} \mathrm{H}$ ($94.9 \mathrm{mg}, 0.289 \mathrm{mmol}$) had specific activity 182 ± 1 $\mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of benzene, irradiated at 313 nm (band width $22 \mathrm{~nm}), 0.0207 \mathrm{mEinstein}$.
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($129.3 \mathrm{mg}, 0.394 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate (16.563 mg , 0.0504 mmol): 2 after tlc, $88 \mathrm{mg}, 83-85^{\circ}, 19.6 \pm 0.1 \mu \mathrm{Ci} / \mathrm{mmol}$; 0.272 mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($129.1 \mathrm{mg}, 0.393 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate (13.132 mg , $0.0400 \mathrm{mmol}): 7,33 \mathrm{mg}, 132-133.5^{\circ}, 791 \pm 6 \mathrm{nCi} / \mathrm{mmol} ; 0.122$ $\mathrm{mmol} ; \phi=0.590 \pm 0.030$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($146.4 \mathrm{mg}, 0.446 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate $(9.281 \mathrm{mg}$, $0.0283 \mathrm{mmol}): 7,21 \mathrm{mg}, 110-112^{\circ}, 129 \pm 1 \mathrm{nCi} / \mathrm{mmol} ; 0.00318$ $\mathrm{mmol} ; ~ \phi=0.154 \pm 0.008$.

Run 3. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclo-propane- ${ }^{3} \mathrm{H}$ ($54.0 \mathrm{mg}, 0.165 \mathrm{mmol}$) had specific activity 180 ± 2 $\mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of benzene, irradiated at 340 nm (band width $7 \mathrm{~nm}), 0.00836 \mathrm{mEinstein}$.
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane $(95.5 \mathrm{mg}, 0.291 \mathrm{mmol})$ added to ${ }^{8} \mathrm{H}$-photolysate $(19.623 \mathrm{mg}$, $0.0598 \mathrm{mmol}): 2$ after tlc, $76.5 \mathrm{mg}, 83.5-86^{\circ}, 29.1 \pm 0.1 \mu \mathrm{Ci} / \mathrm{mmol}$; 0.159 mmol recovered.
cis-3- μ-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($217.5 \mathrm{mg}, 0.662 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate (20.435 mg , $0.0622 \mathrm{mmol}): 7,60 \mathrm{mg}, 132-133^{\circ}, 522 \pm 6 \mathrm{nCi} / \mathrm{mmol} ; ~ 0.00508$ $\mathrm{mmol} ; \phi=0.607 \pm 0.031$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($125.6 \mathrm{mg}, 0.383 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate (13.943 mg , $0.045 \mathrm{mmol}): 7,23 \mathrm{mg}, 110-111^{\circ}, 169 \pm 1 \mathrm{nCi} / \mathrm{mmol} ; 0.00138$ $\mathrm{mmol} ; \phi=0.165 \pm 0.009$.
Run S. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclo-propane- ${ }^{3} \mathrm{H}$ ($50.4 \mathrm{mg}, 0.154 \mathrm{mmol}$) had specific activity 180 ± 2 $\mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of 4.0 M acetophenone in benzene, irradiated at 313 nm (band width 22 nm) with the sensitizer absorbing 98.7% of the light, 0.0483 mEinste .
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane $(90.9 \mathrm{mg}, 0.277 \mathrm{mmol})$ added to ${ }^{3} \mathrm{H}$-photolysate $(24.984 \mathrm{mg}$, 0.0761 mmol): 2 after tic, $92.1 \mathrm{mg}, 82-85^{\circ}, 32.8 \pm 0.1 \mu \mathrm{Ci} /$ mmol ; 0.127 mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($135.1 \mathrm{mg}, 0.411 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate (15.981 mg , $0.0487 \mathrm{mmol}): 7,60 \mathrm{mg}, 131-132^{\circ}, 555 \pm 3 \mathrm{nCi} / \mathrm{mmol} ; 0.00358$ $\mathrm{mmol} ; \phi=0.0742 \pm 0.0040$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($138.2 \mathrm{mg}, 0.420 \mathrm{mmol}$) was added to ${ }^{3} \mathrm{H}$-photolysate (9.435 $\mathrm{mg}, 0.0287 \mathrm{mmol}): \quad 7,10 \mathrm{mg}, 110-111^{\circ}, 82.1 \pm 0.3 \mathrm{nCi} / \mathrm{mmol}$; $0.000907 \mathrm{mmol} ; \phi=0.0188 \pm 0.0010$.
Run Q-1. \quad trans-3-p-Methoxypheny1-trans-2-phenyl-1-benzoyl-cyclopropane- ${ }^{3} \mathrm{H}(97.4 \mathrm{mg}, 0.297 \mathrm{mmol})$ had specific activity $182 \pm$ $1 \mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of 0.50 M piperylene in benzene, irradiated at 313 nm (band width 22 nm) with the reactant absorbing 99.7% of the light, 0.0204 mEinstein .
trans-3-p-Methoxyphenyl-trans-2-pheny1-1-benzoylcyclopropane $(97.2 \mathrm{mg}, 0.296 \mathrm{mmol})$ added to ${ }^{3} \mathrm{H}$-photolysate ($30.104 \mathrm{mg}, 0.0917$ mmol): 2 after tlc, $67.2 \mathrm{mg}, 83-85^{\circ}, 41.7 \pm 0.6 \mu \mathrm{Ci} / \mathrm{mmol} ; 0.284$ mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($136.2 \mathrm{mg}, 0.415 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($17.756 \mathrm{mg}, 0.0541$ $\mathrm{mmol}): 7,33 \mathrm{mg}, 131-132^{\circ}, 811 \pm 1 \mathrm{nCi} / \mathrm{mmol} ; 0.00993 \mathrm{mmol}$; $\phi=0.487 \pm 0.024$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane $(130.9 \mathrm{mg}, 0.399 \mathrm{mmol})$ added to ${ }^{3} \mathrm{H}$-photolysate (11.948 mg , $0.0363 \mathrm{mmol}): 7,39 \mathrm{mg}, 110-111^{\circ}, 136 \pm 0.3 \mathrm{nCi} / \mathrm{mmol} ; 0.00236$ $\mathrm{mmol} ; \phi=0.116 \pm 0.006$.
Run Q-2. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoyl-cyclopropane- ${ }^{3} \mathrm{H}$ ($94.0 \mathrm{mg}, 0.287 \mathrm{mmol}$) had specific activity $182 \pm$
$1 \mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of 1.00 M piperylene in benzene, irradiated at 313 nm (band width 22 nm) with the reactant absorbing 99.4% of the light, 0.0191 mEinstein .
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($101.8 \mathrm{mg}, 0.310 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate $(36.143 \mathrm{mg}$, 0.110 mmol): 2 after tlc, $74 \mathrm{mg}, 84-85^{\circ}, 45.7 \pm 0.4 \mu \mathrm{Ci} / \mathrm{mmol}$; 0.274 mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($142.7 \mathrm{mg}, 0.435 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($18.234 \mathrm{mg}, 0.0555$ $\mathrm{mmol}): 7,29 \mathrm{mg}, 130.5-132^{\circ}, 659-65 \mathrm{nCi} / \mathrm{mmol} ; 0.0809 \mathrm{mmol}$; $\phi=0.424 \pm 0.022$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($141.0 \mathrm{mg}, 0.429 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($14.601 \mathrm{mg}, 0.0445$ $\mathrm{mmol}): 7,22 \mathrm{mg}, 110-111^{\circ}, 118 \pm 1 \mathrm{nCi} / \mathrm{mmol} ; 0.0176 \mathrm{mmol}$; $\phi=0.0921 \pm 0.0050$.

Run Q-3. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoyl-cyclopropane- ${ }^{3} \mathrm{H}$ ($49.1 \mathrm{mg}, 0.150 \mathrm{mmol}$) had specific activity $180 \pm$ $2 \mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of 1.00 M piperylene in benzene, irradiated at 313 nm (band width 22 nm) with the reactant absorbing 98.8% of the light, 0.0178 mEinstein .
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($103.9 \mathrm{mg}, 0.316 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($22.316 \mathrm{mg}, 0.0689$ $\mathrm{mmol}): 2$ after tlc, $80 \mathrm{mg}, 84-86^{\circ}, 29.4 \pm 3 \mu \mathrm{Ci} / \mathrm{mmol} ; 0.132$ mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($118.6 \mathrm{mg}, 0.361 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($15.614 \mathrm{mg}, 0.0475$ $\mathrm{mmol}): 7,42 \mathrm{mg}, 131-132^{\circ}, 1.08 \pm 0.01 \mu \mathrm{Ci} / \mathrm{mmol} ; 0.00680 \mathrm{mmol}$; $\phi=0.382 \pm 0.020$.
trans-3- p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($132.4 \mathrm{mg}, 0.403 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($11.169 \mathrm{mg}, 0.0340$ $\mathrm{mmol}): 7,20 \mathrm{mg}, 110-111^{\circ}, 156 \pm 1 \mu \mathrm{Ci} / \mathrm{mmol} ; 0.00151 \mathrm{mmol}$; $\phi=0.0848 \pm 0.0043$.

Run Q-4. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoyl-cyclopropane- ${ }^{-} \mathrm{H}(92.6 \mathrm{mg}, 0.283 \mathrm{mmol})$ had specific activity $182 \pm$ $1 \mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of 1.50 M piperylene in benzene, irradiated at 313 nm (band width 22 nm) with the reactant absorbing 99.0% of the light, 0.0204 m Einstein.
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($123.0 \mathrm{mg}, 0.375 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($17.096 \mathrm{mg}, 0.0521$ $\mathrm{mmol}): 2$ after tlc, $83-85^{\circ}, 21.0 \pm 0.3 \mu \mathrm{Ci} / \mathrm{mmol}, 0.270 \mathrm{mmol}$ recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane $\left(129.3 \mathrm{mg}, 0.394 \mathrm{mmol}\right.$) added to ${ }^{3} \mathrm{H}$-photolysate ($14.618 \mathrm{mg}, 0.0445$ mmol): $8,50 \mathrm{mg}, 131-132^{\circ}, 538 \pm 1 \mathrm{nCi} / \mathrm{mmol} ; 0.00721 \mathrm{mmol}$; $\phi=0.355 \pm 0.01$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($131.8 \mathrm{mg}, 0.401 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate $(9.4726 \mathrm{mg}$, $0.0289 \mathrm{mmol}): 9,11 \mathrm{mg}, 110-111^{\circ}, 72.2 \pm 0.2 \mathrm{nCl} / \mathrm{mmol} ; 0.00149$ $\mathrm{mmol} ; \phi=0.0734 \pm 0.0037$.
Run Q-5. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ${ }^{-3} \mathrm{H}$ ($139.1 \mathrm{mg}, 0.424 \mathrm{mmol}$) had specific activity 180 $\pm 2 \mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of 1.00 naphthalene in benzene, irradiated at 340 nm (band width 7.4 nm) with the reactant absorbing 96.0% of the light, 0.0175 mEinstein .
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane $(97.9 \mathrm{mg}, 0.298 \mathrm{mmol})$ added to ${ }^{3} \mathrm{H}$-photolysate ($17.574 \mathrm{mg}, 0.0535$ $\mathrm{mmol}): 2$ after tlc, $64.2 \mathrm{mg}, 83-85^{\circ}, 27.0 \pm 0.5 \mu \mathrm{Ci} / \mathrm{mmol} ; 0.417$ mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($124.5 \mathrm{mg}, 0.379 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate (26.332 mg , $0.0802 \mathrm{mmol}): 7,54 \mathrm{mg}, 132-133^{\circ}, 900 \pm 6 \mathrm{nCi} / \mathrm{mmol} ; 0.01004$ $\mathrm{mmol} ; \phi=0.574 \pm 0.028$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($125.1 \mathrm{mg}, 0.381 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($23.166 \mathrm{mg}, 0.0705$ $\mathrm{mmol}): 7,37 \mathrm{mg}, 110-111^{\circ}, 154 \pm 1 \mathrm{nCi} / \mathrm{mmol} ; 1.942 \mathrm{mmol}$; $\phi=0.111 \pm 0.006$.

Run Q-6. trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane $-{ }^{-3} \mathrm{H}(235.0 \mathrm{mg}, 0.715 \mathrm{mmol}$) had specific activity 180 $\pm 2 \mu \mathrm{Ci} / \mathrm{mmol}$, in 39.0 ml of 1.54 M naphthalene in benzene, irradiated at 340 nm (band width 7.4 nm) with the reactant absorbing 96.0% of the light, 0.0173 mEinstein.
trans-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($142.9 \mathrm{mg}, 0.435 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate $(25.001 \mathrm{mg}$, $0.0761 \mathrm{mmol}): 2$ after tlc, $114.3 \mathrm{mg}, 83-85^{\circ}, 25.9 \pm 0.5 \mu \mathrm{Ci} / \mathrm{mmol}$; 0.690 mmol recovered.
cis-3-p-Methoxyphenyl-trans-2-phenyl-1-benzoylcyclopropane ($167.1 \mathrm{mg}, 0.509 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($54.191 \mathrm{mg}, 0.165$ $\mathrm{mmol}): 8,59.2 \mathrm{mg}, 132-133^{\circ}, 782 \pm 3 \mathrm{nCi} / \mathrm{mmol} ; 0.009644 \mathrm{mmol}$; $\dot{\phi}=0.554 \pm 0.027$.
trans-3-p-Methoxyphenyl-cis-2-phenyl-1-benzoylcyclopropane ($146.7 \mathrm{mg}, 0.434 \mathrm{mmol}$) added to ${ }^{3} \mathrm{H}$-photolysate ($38.409 \mathrm{mg}, 0.117$ mmol): $7,67.4 \mathrm{mg}, 110-111^{\circ}, 102 \pm 1 \mathrm{nCi} / \mathrm{mmol} ; 0.00151 \mathrm{mmol}$; $\phi=0.0875 \pm 0.0043$.

Acknowledgment. Support of this research by a National Institutes of Health Predoctoral Fellowship and the National Science Foundation is gratefully acknowledged.

[^0]: (1) Paper XLIX: H. E. Zimmerman and C. O. Bender, J. Amer. Chem. Soc., 91, 7516 (1969); paper L, ibid., in press.
 (2) National Institutes of Health Predoctoral Fellow, 1966-1969.
 (3) H. E. Zimmerman, S. S. Hixson, and E. F. McBride, J. Amer. Chem. Soc., 92, 2000 (1970).

[^1]: (9) Melting points were obtained on a hot-stage apparatus calibrated with known compounds.
 (10) J. S. Buck and W. S. Ide, J. Amer. Chem. Soc., 54, 3013 (1932).

[^2]: (15) Uv fluorescence employed a technique avoiding light impinging directly on compound zones. Only zone edges were inspected briefly.

[^3]: (20) An epoxy adhesive not containing aromatic or other low-energy chromophores was used to cement quartz faces to Pyrex.
 (21) C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London), A235, 518 (1965).

